Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 26 ( 2015-06-30), p. 8019-8024
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 26 ( 2015-06-30), p. 8019-8024
    Abstract: Niche partitioning facilitates species coexistence in a world of limited resources, thereby enriching biodiversity. For decades, biologists have sought to understand how diverse assemblages of large mammalian herbivores (LMH) partition food resources. Several complementary mechanisms have been identified, including differential consumption of grasses versus nongrasses and spatiotemporal stratification in use of different parts of the same plant. However, the extent to which LMH partition food-plant species is largely unknown because comprehensive species-level identification is prohibitively difficult with traditional methods. We used DNA metabarcoding to quantify diet breadth, composition, and overlap for seven abundant LMH species (six wild, one domestic) in semiarid African savanna. These species ranged from almost-exclusive grazers to almost-exclusive browsers: Grass consumption inferred from mean sequence relative read abundance (RRA) ranged from 〉 99% (plains zebra) to 〈 1% (dik-dik). Grass RRA was highly correlated with isotopic estimates of % grass consumption, indicating that RRA conveys reliable quantitative information about consumption. Dietary overlap was greatest between species that were similar in body size and proportional grass consumption. Nonetheless, diet composition differed between all species—even pairs of grazers matched in size, digestive physiology, and location—and dietary similarity was sometimes greater across grazing and browsing guilds than within them. Such taxonomically fine-grained diet partitioning suggests that coarse trophic categorizations may generate misleading conclusions about competition and coexistence in LMH assemblages, and that LMH diversity may be more tightly linked to plant diversity than is currently recognized.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages