Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 25 ( 2015-06-23)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 25 ( 2015-06-23)
    Abstract: Few studies within the pathogenic field have used advanced imaging and analytical tools to quantitatively measure pathogenicity in vivo. In this work, we present a novel approach for the investigation of host–pathogen processes based on medium-throughput 3D fluorescence imaging. The guinea pig model for Shigella flexneri invasion of the colonic mucosa was used to monitor the infectious process over time with GFP-expressing S. flexneri . A precise quantitative imaging protocol was devised to follow individual S. flexneri in a large tissue volume. An extensive dataset of confocal images was obtained and processed to extract specific quantitative information regarding the progression of S. flexneri infection in an unbiased and exhaustive manner. Specific parameters included the analysis of S. flexneri positions relative to the epithelial surface, S. flexneri density within the tissue, and volume of tissue destruction. In particular, at early time points, there was a clear association of S. flexneri with crypts, key morphological features of the colonic mucosa. Numerical simulations based on random bacterial entry confirmed the bias of experimentally measured S. flexneri for early crypt targeting. The application of a correlative light and electron microscopy technique adapted for thick tissue samples further confirmed the location of S. flexneri within colonocytes at the mouth of crypts. This quantitative imaging approach is a novel means to examine host–pathogen systems in a tailored and robust manner, inclusive of the infectious agent.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages