Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 41 ( 2018-10-09), p. 10392-10397
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 41 ( 2018-10-09), p. 10392-10397
    Abstract: Decomposition is a key component of the global carbon (C) cycle, yet current ecosystem C models do not adequately represent the contributions of plant roots and their mycorrhizae to this process. The understanding of decomposition dynamics and their control by traits is particularly limited for the most distal first-order roots. Here we followed decomposition of first-order roots and leaf litter from 35 woody plant species differing in mycorrhizal type over 6 years in a Chinese temperate forest. First-order roots decomposed more slowly ( k = 0.11 ± 0.01 years −1 ) than did leaf litter (0.35 ± 0.02 years −1 ), losing only 35% of initial mass on average after 6 years of exposure in the field. In contrast to leaf litter, nonlignin root C chemistry (nonstructural carbohydrates, polyphenols) accounted for 82% of the large interspecific variation in first-order root decomposition. Leaf litter from ectomycorrhizal (EM) species decomposed more slowly than that from arbuscular mycorrhizal (AM) species, whereas first-order roots of EM species switched, after 2 years, from having slower to faster decomposition compared with those from AM species. The fundamentally different dynamics and control mechanisms of first-order root decomposition compared with those of leaf litter challenge current ecosystem C models, the recently suggested dichotomy between EM and AM plants, and the idea that common traits can predict decomposition across roots and leaves. Aspects of C chemistry unrelated to lignin or nitrogen, and not presently considered in decomposition models, controlled first-order root decomposition; thus, current paradigms of ecosystem C dynamics and model parameterization require revision.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages