Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1998
    In:  Proceedings of the National Academy of Sciences Vol. 95, No. 19 ( 1998-09-15), p. 11134-11139
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 95, No. 19 ( 1998-09-15), p. 11134-11139
    Abstract: Tyrosylprotein sulfotransferase (TPST) is a 54- to 50-kDa integral membrane glycoprotein of the trans-Golgi network found in essentially all tissues investigated, catalyzing the tyrosine O-sulfation of soluble and membrane proteins passing through this compartment. Here we describe ( i ) an approach to identify the TPST protein, referred to as MSC ( m odification after s ubstrate c rosslinking) labeling, which is based on the crosslinking of a substrate peptide to TPST followed by intramolecular [ 35 S]sulfate transfer from the cosubstrate 3′-phosphoadenosine 5′-phosphosulfate (PAPS); and ( ii ) the molecular characterization of a human TPST, referred to as TPST-2, whose sequence is distinct from that reported [TPST-1; Ouyang, Y.-B., Lane, W. S. & Moore, K. L. (1998) Proc. Natl. Acad. Sci. USA 95, 2896–2901] while this study was in progress. Human TPST-2 is a type II transmembrane protein of 377 aa residues that is encoded by a ubiquitously expressed 1.9-kb mRNA originating from seven exons of a gene located on chromosome 22 (22q12.1). A 304-residue segment in the luminal domain of TPST-2 shows 75% amino acid identity to the corresponding segment of TPST-1, including conservation of the residues implicated in the binding of PAPS. Expression of the TPST-2 cDNA in CHO cells resulted in an ≈13-fold increase in both TPST protein, as determined by MSC labeling, and TPST activity. A predicted 359-residue type II transmembrane protein in Caenorhabditis elegans with 45% amino acid identity to TPST-2 in a 257-residue segment of the luminal domain points to the evolutionary conservation of the TPST protein family.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1998
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages