Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2023
    In:  Measurement Science and Technology Vol. 34, No. 12 ( 2023-12-01), p. 125053-
    In: Measurement Science and Technology, IOP Publishing, Vol. 34, No. 12 ( 2023-12-01), p. 125053-
    Abstract: In the study of the high-speed dynamic balance of flexible rotors, rotor unbalance positioning is a challenging topic. Particularly for slender rotors, the axial position of the unbalance has an important influence on the high-speed dynamic balance. The unbalance at different axial positions is not the same or even opposite in different rotor mode vibration behaviors. If the unbalance position of a rotor can be identified, the actual unbalance of the rotor can be reduced from the root. This balance method has the same effect in each vibration mode of the rotor; hence, low-speed dynamic balance can be realized to replace high-speed dynamic balance, considerably saving on costs. Deep learning based on few labeled samples can achieve good results for the identification of unbalanced positions; however, there are infinite potential positions of unbalance in the actual rotor. It is difficult to collect sufficient labeled samples to train a reliable intelligent diagnostic model. Fortunately, a large number of rotor vibration datasets labeled with different unbalance positions are available using the rotor dynamic model, and the unbalance position data calculated using the dynamic model contain diagnostic knowledge related to the rotor unbalance position data measured in the rig. Hence, inspired by transfer learning, this study proposed a transfer learning method using dynamic model simulation and experiment data for flexible rotor unbalance fault location. Cross-domain deep transfer recognition of rotor unbalance position was realized.
    Type of Medium: Online Resource
    ISSN: 0957-0233 , 1361-6501
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1362523-8
    detail.hit.zdb_id: 1011901-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages