Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2011
    In:  Chinese Journal of Chemical Physics Vol. 24, No. 6 ( 2011-12-01), p. 741-744
    In: Chinese Journal of Chemical Physics, AIP Publishing, Vol. 24, No. 6 ( 2011-12-01), p. 741-744
    Abstract: Functionalizing and patterning of the silicon surface can be realized simultaneously by the chemomechanical method. The oxide-coated crystalline silicon (100) surface is scratched with a diamond tool in the presence of aryldiazonium salt (C6H5N2BF4). Scratching activates the silicon surface by removing the passivation oxide layer to expose fresh Si atoms. The surface morphologies before and after chemomechanical reaction are characterized with atomic force microscopy. Time-of-flight secondary ion mass spectroscopy confirms the presence of C6H5 and provides evidence for the formation of self-assembled monolayer (SAM) on silicon surface via Si—C covalent bonds by scratching the silicon in the presence of C6H5N2BF4.C6H5 groups further bond with surface Si atoms via Si—C covalent bonds as confirmed from infrared spectroscopy results. We propose that chemomechanical reaction, which occurred during scratching the silicon surface, produce C6H5 groups from aryldiazonium salt. The relevant adhesion of SAM is measured. It is found that SAM can reduce the adhesion of silicon. The monolayer can be used as anti-adhesion monolayer for micro/nanoelectromechanical systems components under different environments and operating conditions.
    Type of Medium: Online Resource
    ISSN: 1674-0068 , 2327-2244
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 2381472-X
    SSG: 6,25
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages