Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2023
    In:  Journal of Physics: Conference Series Vol. 2563, No. 1 ( 2023-08-01), p. 012030-
    In: Journal of Physics: Conference Series, IOP Publishing, Vol. 2563, No. 1 ( 2023-08-01), p. 012030-
    Abstract: In recent years, conductive hydrogels, as an ideal flexible material, have quite broad application prospects in various flexible electronics fields, such as flexible supercapacitors, flexible batteries, and flexible sensors. However, mechanical stress such as stretching, fracture, and compression will affect the performance of conductive hydrogel during the application, which limits its further application. Polysaccharides, such as cellulose and chitosan, are widely distributed and easy-to-obtain biological macromolecules, which contain a large number of polar functional groups (carboxyl, amino, etc.), which can be formed with polymer hydrogel molecular chains, thereby improving the performance of the hydrogel. Herein, we prepared a kind of conductive hydrogel with high toughness, high conductivity, and self-adhesion by introducing carboxymethyl chitosan and maltose to induce a dynamic Schiff base reaction in the hydrogel. It is conceived that this study proposed a potential approach for the progress of conductive hydrogels in various flexible electronics fields.
    Type of Medium: Online Resource
    ISSN: 1742-6588 , 1742-6596
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2166409-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages