Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Briefings in Bioinformatics Vol. 24, No. 1 ( 2023-01-19)
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 24, No. 1 ( 2023-01-19)
    Abstract: Long noncoding RNA (lncRNA) is a kind of noncoding RNA with a length of more than 200 nucleotide units. Numerous research studies have proven that although lncRNAs cannot be directly translated into proteins, lncRNAs still play an important role in human growth processes by interacting with proteins. Since traditional biological experiments often require a lot of time and material costs to explore potential lncRNA–protein interactions (LPI), several computational models have been proposed for this task. In this study, we introduce a novel deep learning method known as combined graph auto-encoders (LPICGAE) to predict potential human LPIs. First, we apply a variational graph auto-encoder to learn the low dimensional representations from the high-dimensional features of lncRNAs and proteins. Then the graph auto-encoder is used to reconstruct the adjacency matrix for inferring potential interactions between lncRNAs and proteins. Finally, we minimize the loss of the two processes alternately to gain the final predicted interaction matrix. The result in 5-fold cross-validation experiments illustrates that our method achieves an average area under receiver operating characteristic curve of 0.974 and an average accuracy of 0.985, which is better than those of existing six state-of-the-art computational methods. We believe that LPICGAE can help researchers to gain more potential relationships between lncRNAs and proteins effectively.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages