Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Bioinformatics Vol. 36, No. Supplement_1 ( 2020-07-01), p. i93-i101
    In: Bioinformatics, Oxford University Press (OUP), Vol. 36, No. Supplement_1 ( 2020-07-01), p. i93-i101
    Abstract: Recent attempts to assemble extra-long tandem repeats (such as centromeres) faced the challenge of translating long error-prone reads from the nucleotide alphabet into the alphabet of repeat units. Human centromeres represent a particularly complex type of high-order repeats (HORs) formed by chromosome-specific monomers. Given a set of all human monomers, translating a read from a centromere into the monomer alphabet is modeled as the String Decomposition Problem. The accurate translation of reads into the monomer alphabet turns the notoriously difficult problem of assembling centromeres from reads (in the nucleotide alphabet) into a more tractable problem of assembling centromeres from translated reads. Results We describe a StringDecomposer (SD) algorithm for solving this problem, benchmark it on the set of long error-prone Oxford Nanopore reads generated by the Telomere-to-Telomere consortium and identify a novel (rare) monomer that extends the set of known X-chromosome specific monomers. Our identification of a novel monomer emphasizes the importance of identification of all (even rare) monomers for future centromere assembly efforts and evolutionary studies. To further analyze novel monomers, we applied SD to the set of recently generated long accurate Pacific Biosciences HiFi reads. This analysis revealed that the set of known human monomers and HORs remains incomplete. SD opens a possibility to generate a complete set of human monomers and HORs for using in the ongoing efforts to generate the complete assembly of the human genome. Availability and implementation StringDecomposer is publicly available on https://github.com/ablab/stringdecomposer. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages