Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2022
    In:  Bioinformatics Vol. 38, No. Supplement_2 ( 2022-09-16), p. ii134-ii140
    In: Bioinformatics, Oxford University Press (OUP), Vol. 38, No. Supplement_2 ( 2022-09-16), p. ii134-ii140
    Kurzfassung: Access to unprecedented amounts of quantitative biological data allows us to build and test biochemically accurate reaction–diffusion models of intracellular processes. However, any increase in model complexity increases the number of unknown parameters and, thus, the computational cost of model analysis. To efficiently characterize the behavior and robustness of models with many unknown parameters remains, therefore, a key challenge in systems biology. Results We propose a novel computational framework for efficient high-dimensional parameter space characterization of reaction–diffusion models in systems biology. The method leverages the Lp-Adaptation algorithm, an adaptive-proposal statistical method for approximate design centering and robustness estimation. Our approach is based on an oracle function, which predicts for any given point in parameter space whether the model fulfills given specifications. We propose specific oracles to efficiently predict four characteristics of Turing-type reaction–diffusion models: bistability, instability, capability of spontaneous pattern formation and capability of pattern maintenance. We benchmark the method and demonstrate that it enables global exploration of a model’s ability to undergo pattern-forming instabilities and to quantify robustness for model selection in polynomial time with dimensionality. We present an application of the framework to pattern formation on the endosomal membrane by the small GTPase Rab5 and its effectors, and we propose molecular mechanisms underlying this system. Availability and implementation Our code is implemented in MATLAB and is available as open source under https://git.mpi-cbg.de/mosaic/software/black-box-optimization/rd-parameter-space-screening. Supplementary information Supplementary data are available at Bioinformatics online.
    Materialart: Online-Ressource
    ISSN: 1367-4803 , 1367-4811
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2022
    ZDB Id: 1468345-3
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz