Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2009
    In:  Bioinformatics Vol. 25, No. 2 ( 2009-01-15), p. 265-271
    In: Bioinformatics, Oxford University Press (OUP), Vol. 25, No. 2 ( 2009-01-15), p. 265-271
    Kurzfassung: Motivation: Combinatorial effects, in which several variables jointly influence an output or response, play an important role in biological systems. In many settings, Boolean functions provide a natural way to describe such influences. However, biochemical data using which we may wish to characterize such influences are usually subject to much variability. Furthermore, in high-throughput biological settings Boolean relationships of interest are very often sparse, in the sense of being embedded in an overall dataset of higher dimensionality. This motivates a need for statistical methods capable of making inferences regarding Boolean functions under conditions of noise and sparsity. Results: We put forward a statistical model for sparse, noisy Boolean functions and methods for inference under the model. We focus on the case in which the form of the underlying Boolean function, as well as the number and identity of its inputs are all unknown. We present results on synthetic data and on a study of signalling proteins in cancer biology. Availability:  go.warwick.ac.uk/sachmukherjee/sci Contact:  s.n.mukherjee@warwick.ac.uk
    Materialart: Online-Ressource
    ISSN: 1367-4811 , 1367-4803
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2009
    ZDB Id: 1468345-3
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz