Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2014
    In:  Bioinformatics Vol. 30, No. 17 ( 2014-09-01), p. 2471-2479
    In: Bioinformatics, Oxford University Press (OUP), Vol. 30, No. 17 ( 2014-09-01), p. 2471-2479
    Kurzfassung: Motivation: Over the recent years, the field of whole-metagenome shotgun sequencing has witnessed significant growth owing to the high-throughput sequencing technologies that allow sequencing genomic samples cheaper, faster and with better coverage than before. This technical advancement has initiated the trend of sequencing multiple samples in different conditions or environments to explore the similarities and dissimilarities of the microbial communities. Examples include the human microbiome project and various studies of the human intestinal tract. With the availability of ever larger databases of such measurements, finding samples similar to a given query sample is becoming a central operation. Results: In this article, we develop a content-based exploration and retrieval method for whole-metagenome sequencing samples. We apply a distributed string mining framework to efficiently extract all informative sequence k-mers from a pool of metagenomic samples and use them to measure the dissimilarity between two samples. We evaluate the performance of the proposed approach on two human gut metagenome datasets as well as human microbiome project metagenomic samples. We observe significant enrichment for diseased gut samples in results of queries with another diseased sample and high accuracy in discriminating between different body sites even though the method is unsupervised. Availability and implementation: A software implementation of the DSM framework is available at https://github.com/HIITMetagenomics/dsm-framework. Contact:  sohan.seth@hiit.fi or antti.honkela@hiit.fi Supplementary information:  Supplementary Data are available at Bioinformatics online.
    Materialart: Online-Ressource
    ISSN: 1367-4803 , 1367-4811
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2014
    ZDB Id: 1468345-3
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz