Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Cardiovascular Research, Oxford University Press (OUP), Vol. 117, No. 2 ( 2021-01-21), p. 450-461
    Kurzfassung: Eva-1 homologue 1 (Eva1a) is a novel protein involved in the regulation of cardiac remodelling and plaque stability, but little is known about its role in re-endothelialization and the development of atherosclerosis (AS). Thus, in the present study, we aimed to elucidate the function of Eva1a in re-endothelialization and AS. Methods and results Wire injuries of carotid and femoral arteries were established in Eva1a−/− mice. Eva1a-deficient mice were crossed with apolipoprotein E−/− (ApoE−/−) mice to evaluate AS development and re-endothelialization of carotid artery injuries. Denudation of the carotid artery at 3, 5, and 7 days was significantly aggravated in Eva1a−/− mice. The neointima of the femoral artery at 14 and 28 days was consequently exacerbated in Eva1a−/− mice. The area of atherosclerotic lesions was increased in Eva1a−/−ApoE−/− mice. To explore the underlying mechanisms, we performed transwell, scratch migration, cell counting kit-8, and bromodeoxyuridine assays using cultured human aorta endothelial cells (HAECs), which demonstrated that EVA1A promoted HAEC migration and proliferation. Proteomics revealed that the level of actin-related protein 2/3 complex subunit 1B (Arpc1b) was decreased, while Eva1a expression was absent. Arpc1b was found to be a downstream molecule of EVA1A by small interfering RNA transfection assay. Activation of Rac1 and Cdc42 GTPases was also regulated by EVA1A. Conclusion This study provides insights into anti-atherogenesis effects of Eva1a by promoting endothelium repair. Thus, Eva1a is a promising therapeutic target for AS.
    Materialart: Online-Ressource
    ISSN: 0008-6363 , 1755-3245
    RVK:
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2021
    ZDB Id: 1499917-1
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz