Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genome Biology and Evolution, Oxford University Press (OUP), Vol. 12, No. 4 ( 2020-04-01), p. 396-406
    Abstract: Extensive use of next-generation sequencing has the potential to transform our knowledge on how genomic variation within bacterial species impacts phenotypic versatility. Because different environments have unique selection pressures, they drive divergent evolution. However, there is also parallel or convergent evolution of traits in independent bacterial isolates inhabiting similar environments. The application of tools to describe population-wide genomic diversity provides an opportunity to measure the predictability of genetic changes underlying adaptation. Here, we describe patterns of sequence variations in the core genome among 99 individual Pseudomonas aeruginosa clinical isolates and identified single-nucleotide polymorphisms that are the basis for branching of the phylogenetic tree. We also identified single-nucleotide polymorphisms that were acquired independently, in separate lineages, and not through inheritance from a common ancestor. Although our results demonstrate that the Pseudomonas aeruginosa core genome is highly conserved and in general, not subject to adaptive evolution, instances of parallel evolution will provide an opportunity to uncover genetic changes that underlie phenotypic diversity.
    Type of Medium: Online Resource
    ISSN: 1759-6653
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2495328-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages