Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Antimicrobial Chemotherapy, Oxford University Press (OUP), Vol. 75, No. 7 ( 2020-07-01), p. 1917-1924
    Abstract: To evaluate the population pharmacokinetics of cefoperazone in children and establish an evidence-based dosing regimen using a developmental pharmacokinetic–pharmacodynamic approach in order to optimize cefoperazone treatment. Methods A model-based, open-label, opportunistic-sampling pharmacokinetic study was conducted in China. Blood samples from 99 cefoperazone-treated children were collected and quantified by HPLC/MS. NONMEM software was used for population pharmacokinetic–pharmacodynamic analysis. This study was registered at ClinicalTrials.gov (NCT03113344). Results A two-compartment model with first-order elimination agreed well with the experimental data. Covariate analysis showed that current body weight had a significant effect on the pharmacokinetics of cefoperazone. Monte Carlo simulation showed that for bacteria for which cefoperazone has an MIC of 0.5 mg/L, 78.1% of hypothetical children treated with ‘40 mg/kg/day, q8h, IV drip 3 h’ would reach the pharmacodynamic target. For bacteria for which cefoperazone has an MIC of 8 mg/L, 88.4% of hypothetical children treated with 80 mg/kg/day (continuous infusion) would reach the treatment goal. A 160 mg/kg/day (continuous infusion) regimen can cover bacteria for which cefoperazone has an MIC of 16 mg/L. Nevertheless, even if using the maximum reported dose of 160 mg/kg/day (continuous infusion), the ratio of hypothetical children reaching the treatment target was only 9.9% for bacteria for which cefoperazone has an MIC of 32 mg/L. Conclusions For cefoperazone, population pharmacokinetics were evaluated in children and an appropriate dosing regimen was developed based on developmental pharmacokinetics–pharmacodynamics. The dose indicated in the instructions (20–160 mg/kg/day) can basically cover the clinically common bacteria for which cefoperazone has an MIC of ≤16 mg/L. However, for bacteria for which the MIC is & gt;16 mg/L, cefoperazone is not a preferred choice.
    Type of Medium: Online Resource
    ISSN: 0305-7453 , 1460-2091
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1467478-6
    detail.hit.zdb_id: 191709-2
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages