Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Oxford University Press (OUP) ; 2015
    In:  Journal of the American Medical Informatics Association Vol. 22, No. 5 ( 2015-09-01), p. 1001-1008
    In: Journal of the American Medical Informatics Association, Oxford University Press (OUP), Vol. 22, No. 5 ( 2015-09-01), p. 1001-1008
    Kurzfassung: Objective To improve the normalization of relative and incomplete temporal expressions (RI-TIMEXes) in clinical narratives. Methods We analyzed the RI-TIMEXes in temporally annotated corpora and propose two hypotheses regarding the normalization of RI-TIMEXes in the clinical narrative domain: the anchor point hypothesis and the anchor relation hypothesis. We annotated the RI-TIMEXes in three corpora to study the characteristics of RI-TMEXes in different domains. This informed the design of our RI-TIMEX normalization system for the clinical domain, which consists of an anchor point classifier, an anchor relation classifier, and a rule-based RI-TIMEX text span parser. We experimented with different feature sets and performed an error analysis for each system component. Results The annotation confirmed the hypotheses that we can simplify the RI-TIMEXes normalization task using two multi-label classifiers. Our system achieves anchor point classification, anchor relation classification, and rule-based parsing accuracy of 74.68%, 87.71%, and 57.2% (82.09% under relaxed matching criteria), respectively, on the held-out test set of the 2012 i2b2 temporal relation challenge. Discussion Experiments with feature sets reveal some interesting findings, such as: the verbal tense feature does not inform the anchor relation classification in clinical narratives as much as the tokens near the RI-TIMEX. Error analysis showed that underrepresented anchor point and anchor relation classes are difficult to detect. Conclusions We formulate the RI-TIMEX normalization problem as a pair of multi-label classification problems. Considering only RI-TIMEX extraction and normalization, the system achieves statistically significant improvement over the RI-TIMEX results of the best systems in the 2012 i2b2 challenge.
    Materialart: Online-Ressource
    ISSN: 1527-974X , 1067-5027
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2015
    ZDB Id: 2018371-9
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz