Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Journal of Molecular Cell Biology Vol. 15, No. 3 ( 2023-08-03)
    In: Journal of Molecular Cell Biology, Oxford University Press (OUP), Vol. 15, No. 3 ( 2023-08-03)
    Abstract: SARS-CoV-2, the coronavirus that causes the disease COVID-19, has claimed millions of lives over the past 2 years. This demands rapid development of effective therapeutic agents that target various phases of the viral replication cycle. The interaction between host transmembrane serine protease 2 (TMPRSS2) and viral SPIKE protein is an important initial step in SARS-CoV-2 infection, offering an opportunity for therapeutic development of viral entry inhibitors. Here, we report the development of a time-resolved fluorescence/Förster resonance energy transfer (TR-FRET) assay for monitoring the TMPRSS2–SPIKE interaction in lysate from cells co-expressing these proteins. The assay was configured in a 384-well-plate format for high-throughput screening with robust assay performance. To enable large-scale compound screening, we further miniaturized the assay into 1536-well ultrahigh-throughput screening (uHTS) format. A pilot screen demonstrated the utilization of the assay for uHTS. Our optimized TR-FRET uHTS assay provides an enabling platform for expanded screening campaigns to discover new classes of small-molecule inhibitors that target the SPIKE and TMPRSS2 protein–protein interaction.
    Type of Medium: Online Resource
    ISSN: 1674-2788 , 1759-4685
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2500949-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages