Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Journal of Radiation Research, Oxford University Press (OUP), Vol. 64, No. 5 ( 2023-09-22), p. 842-849
    Kurzfassung: This study aims to evaluate the dosimetric accuracy of a deep learning (DL)-based deliverable volumetric arc radiation therapy (VMAT) plan generated using DL-based automated planning assistant system (AIVOT, prototype version) for patients with prostate cancer. The VMAT data (cliDose) of 68 patients with prostate cancer treated with VMAT treatment (70–74 Gy/28–37 fr) at our hospital were used (n = 55 for training and n = 13 for testing). First, a HD-U-net-based 3D dose prediction model implemented in AIVOT was customized using the VMAT data. Thus, a predictive VMAT plan (preDose) comprising AIVOT that predicted the 3D doses was generated. Second, deliverable VMAT plans (deliDose) were created using AIVOT, the radiation treatment planning system Eclipse (version 15.6) and its vender-supplied objective functions. Finally, we compared these two estimated DL-based VMAT treatment plans—i.e. preDose and deliDose—with cliDose. The average absolute dose difference of all DVH parameters for the target tissue between cliDose and deliDose across all patients was 1.32 ± 1.35% (range: 0.04–6.21%), while that for all the organs at risks was 2.08 ± 2.79% (range: 0.00–15.4%). The deliDose was superior to the cliDose in all DVH parameters for bladder and rectum. The blinded plan scoring of deliDose and cliDose was 4.54 ± 0.50 and 5.0 ± 0.0, respectively (All plans scored ≥4 points, P = 0.03.) This study demonstrated that DL-based deliverable plan for prostate cancer achieved the clinically acceptable level. Thus, the AIVOT software exhibited a potential for automated planning with no intervention for patients with prostate cancer.
    Materialart: Online-Ressource
    ISSN: 0449-3060 , 1349-9157
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2023
    ZDB Id: 2038914-0
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz