In:
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 514, No. 4 ( 2022-07-13), p. 6038-6052
Kurzfassung:
We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.
Materialart:
Online-Ressource
ISSN:
0035-8711
,
1365-2966
DOI:
10.1093/mnras/stac1735
Sprache:
Englisch
Verlag:
Oxford University Press (OUP)
Publikationsdatum:
2022
ZDB Id:
2016084-7
SSG:
16,12