Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 522, No. 1 ( 2023-04-13), p. 412-425
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 522, No. 1 ( 2023-04-13), p. 412-425
    Abstract: Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the non-locality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Y-transformation, the point-mass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like set-up and also when applied to DES Y3 data. With the LSST Y1 set-up, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages