Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Monthly Notices of the Royal Astronomical Society Vol. 486, No. 3 ( 2019-07-01), p. 2995-3005
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 486, No. 3 ( 2019-07-01), p. 2995-3005
    Abstract: We use ESA/Gaia astrometry together with SEGUE and LAMOST measurements of the GD-1 stellar stream to explore the improvement on the Galactic gravitational potential that these new data provide. Assuming a realistic universal model for the dark matter halo together with reasonable models of the baryonic components, we find that the orbital solutions for GD-1 require the circular velocity at the Solar radius to be $V_{\rm circ}({\rm R}_\odot) =244\pm 4{\rm \, km\, s^{-1}}$, and also that the density flattening of the dark halo is $q_{\rho }=0.82^{+0.25}_{-0.13}$. The corresponding Galactic mass within $20{\rm \, kpc}$ was estimated to be $M_{\rm MW}(\lt 20{\rm \, kpc})=2.5\pm 0.2 \times 10^{11} {\rm \, M_\odot }$. Moreover, Gaia’s excellent proper motions also allowed us to constrain the velocity dispersion of the GD-1 stream in the direction tangential to the line of sight to be $\lt 2.30{\rm \, km\, s^{-1}}$ (95 per cent confidence limit), confirming the extremely cold dynamical nature of this system.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages