Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Nucleic Acids Research Vol. 48, No. 16 ( 2020-09-18), p. 9250-9261
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 48, No. 16 ( 2020-09-18), p. 9250-9261
    Abstract: N 6-methylation of 2′-O-methyladenosine (Am) in RNA occurs in eukaryotic cells to generate N6,2′-O-dimethyladenosine (m6Am). Identification of the methyltransferase responsible for m6Am catalysis has accelerated studies on the function of m6Am in RNA processing. While m6Am is generally found in the first transcribed nucleotide of mRNAs, the modification is also found internally within U2 snRNA. However, the writer required for catalyzing internal m6Am formation had remained elusive. By sequencing transcriptome-wide RNA methylation at single-base-resolution, we identified human METTL4 as the writer that directly methylates Am at U2 snRNA position 30 into m6Am. We found that METTL4 localizes to the nucleus and its conserved methyltransferase catalytic site is required for U2 snRNA methylation. By sequencing human cells with overexpressed Mettl4, we determined METTL4’s in vivo target RNA motif specificity. In the absence of Mettl4 in human cells, U2 snRNA lacks m6Am thereby affecting a subset of splicing events that exhibit specific features such as 3′ splice-site weakness and an increase in exon inclusion. These findings suggest that METTL4 methylation of U2 snRNA regulates splicing of specific pre-mRNA transcripts.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages