In:
Neuro-Oncology, Oxford University Press (OUP), Vol. 22, No. Supplement_2 ( 2020-11-09), p. ii76-ii77
Abstract:
Ependymoma represents a heterogeneous disease affecting the entire neuraxis. Extensive molecular profiling efforts have identified molecular ependymoma subgroups based on DNA methylation. However, the intratumoral heterogeneity and developmental origins of these groups are only partially understood, and effective treatments are still lacking for about 50% of patients with high-risk tumors. We interrogated the cellular architecture of ependymoma using single cell/single nucleus RNA-sequencing to analyze 24 tumor specimens across major molecular subgroups and anatomic locations. We additionally analyzed ten patient-derived ependymoma cell models and two patient-derived xenografts (PDXs). Interestingly, we identified an analogous cellular hierarchy across all ependymoma groups, originating from undifferentiated neural stem cell-like populations towards different degrees of impaired differentiation states comprising neuronal precursor-like, astro-glial-like, and ependymal-like tumor cells. While prognostically favorable ependymoma groups predominantly harbored differentiated cell populations, aggressive groups were enriched for undifferentiated subpopulations. Projection of transcriptomic signatures onto an independent bulk RNA-seq cohort stratified patient survival even within known molecular groups, thus refining the prognostic power of DNA methylation-based profiling. Furthermore, we identified novel potentially druggable targets such as IGF- and FGF-signaling within poorly prognostic transcriptional programs. Ependymoma-derived cell models/PDXs widely recapitulated the transcriptional programs identified within fresh tumors and are leveraged to validate identified target genes in functional follow-up analyses. Taken together, our analyses reveal a developmental hierarchy and transcriptomic context underlying the biologically and clinically distinct behavior of ependymoma groups. The newly characterized cellular states and underlying regulatory networks could serve as basis for future therapeutic target identification and reveal biomarkers for clinical trials.
Type of Medium:
Online Resource
ISSN:
1522-8517
,
1523-5866
DOI:
10.1093/neuonc/noaa215.314
Language:
English
Publisher:
Oxford University Press (OUP)
Publication Date:
2020
detail.hit.zdb_id:
2094060-9