Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Plant And Cell Physiology Vol. 64, No. 9 ( 2023-09-15), p. 1046-1056
    In: Plant And Cell Physiology, Oxford University Press (OUP), Vol. 64, No. 9 ( 2023-09-15), p. 1046-1056
    Abstract: Strigolactones (SLs) play fundamental roles in regulating plant architecture, which is a major factor determining crop yield. The perception and signal transduction of SLs require the formation of a complex containing the receptor DWARF14 (D14), an F-box protein D3 and a transcriptional regulator D53 in an SL-dependent manner. Structural and biochemical analyses of D14 and its orthologs DAD2 and AtD14, D3 and the complexes of ASK1−D3−AtD14 and D3CTH–D14 have made great contributions to understanding the mechanisms of SL perception. However, structural analyses of D53 and the D53−D3−D14 holo-complex are challenging, and the biochemical mechanism underlying the complex assembly remains poorly understood. Here, we found that apo-D53 was rather flexible and reconstituted the holo-complex containing D53, S-phase kinase-associated protein 1 (SKP1), D3 and D14 with rac-GR24. The cryo-electron microscopy (cryo-EM) structure of SKP1−D3−D14 in the presence of D53 was analyzed and superimposed on the crystal structure of ASK1−D3−AtD14 without D53. No large conformational rearrangement was observed, but a 9Å rotation appeared between D14 and AtD14. Using hydrogen–deuterium exchange monitored by mass spectrometry, we analyzed dynamic motifs of D14, D3 and D53 in the D53−SKP1−D3−D14 complex assembly process and further identified two potential interfaces in D53 that are located in the N and D2 domains, respectively. Together, our results uncovered the dynamic conformational changes and built a model of the holo-complex D53−SKP1−D3−D14, offering valuable information for the biochemical and genetic mechanisms of SL perception and signal transduction.
    Type of Medium: Online Resource
    ISSN: 0032-0781 , 1471-9053
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2020758-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages