Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Progress of Theoretical and Experimental Physics Vol. 2022, No. 1 ( 2022-01-21)
    In: Progress of Theoretical and Experimental Physics, Oxford University Press (OUP), Vol. 2022, No. 1 ( 2022-01-21)
    Abstract: The small binding energy of the hypertriton leads to predictions of the non-existence of bound hypernuclei for isotriplet three-body systems such as nnΛ. However, invariant mass spectroscopy at GSI has reported events that may be interpreted as the bound nnΛ state. The nnΛ state was sought by missing-mass spectroscopy via the (e, e′K+) reaction at Jefferson Lab’s experimental Hall A. The present experiment has higher sensitivity to the nnΛ-state investigation in terms of better precision by a factor of about three. The analysis shown in this article focuses on the derivation of the reaction cross-section for the 3H(γ*, K+)X reaction. Events that were detected in an acceptance, where a Monte Carlo simulation could reproduce the data well ($|\delta p/p| \lt 4\%$), were analyzed to minimize the systematic uncertainty. No significant structures were observed with the acceptance cuts, and the upper limits of the production cross-section of the nnΛ state were obtained to be 21 and $31 \, \rm {nb} \, \rm {sr}^{-1}$ at the $90\%$ confidence level when theoretical predictions of (−BΛ, Γ) = (0.25, 0.8) MeV and (0.55, 4.7) MeV, respectively, were assumed. The cross-section result provides valuable information for examining the existence of nnΛ.
    Type of Medium: Online Resource
    ISSN: 2050-3911
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2705045-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages