Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 1999
    In:  Anesthesiology Vol. 91, No. 5 ( 1999-11-01), p. 1378-1378
    In: Anesthesiology, Ovid Technologies (Wolters Kluwer Health), Vol. 91, No. 5 ( 1999-11-01), p. 1378-1378
    Abstract: Because of its high density and viscosity, xenon (Xe) may influence respiratory mechanics when used as an inhaled anesthetic. Therefore the authors studied respiratory mechanics during xenon and nitrous oxide (N2O) anesthesia before and during methacholine-induced bronchoconstriction. Methods Sixteen pentobarbital-anesthetized pigs initially were ventilated with 70% nitrogen-oxygen. Then they were randomly assigned to a test period of ventilation with either 70% xenon-oxygen or 70% N2O-oxygen (n = 8 for each group). Nitrogen-oxygen ventilation was then resumed. Tidal volume and inspiratory flow rate were set equally throughout the study. During each condition the authors measured peak and mean airway pressure (Pmax and Pmean) and airway resistance (R(aw)) by the end-inspiratory occlusion technique. This sequence was then repeated during a methacholine infusion. Results Both before and during methacholine airway resistance was significantly higher with xenon-oxygen (4.0 +/- 1.7 and 10.9 +/- 3.8 cm H2O x s(-1) x 1(-1), mean +/- SD) when compared to nitrogen-oxygen (2.6 +/- 1.1 and 5.8 +/- 1.4 cm H2O x s(-1) x l(-1), P & lt; 0.01) and N2O-oxygen (2.9 +/- 0.8 and 7.0 +/- 1.9, P & lt; 0.01). Pmax and Pmean did not differ before bronchoconstriction, regardless of the inspired gas mixture. During bronchoconstriction Pmax and Pmean both were significantly higher with xenon-oxygen (Pmax, 33.1 +/- 5.5 and Pmean, 11.9 +/- 1.6 cm H2O) when compared to N2O-oxygen (28.4 +/- 5.7 and 9.5 +/- 1.6 cm H2O, P & lt; 0.01) and nitrogen-oxygen (28.0 +/- 4.4 and 10.6 +/- 1.3 cm H2O, P & lt; 0.01). Conclusions Airway pressure and resistance are increased during xenon anesthesia. This response is moderate and not likely to assume major importance for the general use of xenon in anesthesia.
    Type of Medium: Online Resource
    ISSN: 0003-3022
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 1999
    detail.hit.zdb_id: 2016092-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages