Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Investigative Radiology, Ovid Technologies (Wolters Kluwer Health), Vol. 57, No. 6 ( 2022-6), p. 406-411
    Abstract: The aim of this study was to evaluate the feasibility and accuracy of cardiac late enhancement (LE) scanning for extracellular volume (ECV) quantification with dual-source photon-counting detector computed tomography (PCD-CT). Materials and Methods In this institutional review board–approved study, 30 patients (mean age, 79 years; 12 women; mean body mass index, 28 kg/m 2 ) with severe aortic stenosis undergoing PCD-CT as part of their preprocedural workup for transcatheter aortic valve replacement were included. The scan protocol consisted of a nonenhanced calcium-scoring scan, coronary CT angiography (CTA) followed by CTA of the thoracoabdominal aorta, and a low-dose LE scan 5 minutes after the administration of 100 mL contrast media (all scans electrocardiogram-gated). Virtual monoenergetic (65 keV) and dual-energy (DE) iodine images were reconstructed from the LE scan. Extracellular volume was calculated using the iodine ratios of myocardium and blood-pool of the LE scan, and additionally based on single-energy (SE) subtraction of the nonenhanced scan from the LE scan. Three-dimensional analysis was performed automatically for the whole-heart myocardial volume by matching a heart model generated from the respective coronary CTA data. Bland-Altman and correlation analysis were used to compare the ECV values determined by both methods. Results The median dose length product for the LE scan was 84 mGy·cm (interquartile range, 69; 125 mGy·cm). Extracellular volume quantification was feasible in all patients. The median ECV value was 30.5% (interquartile range, 28.4%–33.6%). Two focal ECV elevations matched known prior myocardial infarction. The DE- and SE-based ECV quantification correlated well ( r = 0.87, P 〈 0.001). Bland-Altman analysis showed small mean errors between DE- and SE-based ECV quantification (0.9%; 95% confidence interval, 0.1%–1.6%) with narrow limits of agreement (−3.3% to 5.0%). Conclusions Dual-source PCD-CT enables accurate ECV quantification using an LE cardiac DE scan at low radiation dose. Extracellular volume calculation from iodine ratios of the LE scan obviates the need for acquisition of a true nonenhanced scan and is not affected by potential misregistration between 2 separate scans.
    Type of Medium: Online Resource
    ISSN: 1536-0210 , 0020-9996
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2041543-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages