Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2020
    In:  Annals of Plastic Surgery Vol. 84, No. 1S ( 2020-1), p. S116-S122
    In: Annals of Plastic Surgery, Ovid Technologies (Wolters Kluwer Health), Vol. 84, No. 1S ( 2020-1), p. S116-S122
    Abstract: In this study, a novel antiadhesion membrane made of polycaprolactone, gelatin, and chitosan was fabricated using the electrospinning technique. A series of polycaprolactone/gelatin/chitosan (PGC) electrospun membranes with different amounts of chitosan (0%, 0.5%, 1%, and 2% in weight percentage) was synthesized. The physicochemical properties and biocompatibility of the fabricated membranes were examined and compared with the aim to select an effective antiadhesion membrane. Scanning electron microscopy showed that these 4 electrospun membranes had similar fiber diameter and pore area, with no statistical differences between them. Furthermore, the contact angle decreased with increased chitosan content, indicating that chitosan may contribute to increased hydrophilic properties. The in vitro degradation test revealed that the higher chitosan content corresponded to a lower degradation rate in PGC membranes within 7 days. All PGC membranes exhibited similar cell proliferation; however, cell proliferation was lower than tissue culture polystyrene ( P 〈 0.05). To compare antiadhesion ability, the adhesion between the cecum and abdominal wall was created in a rat model. Assessment after implantation of electrospun membranes revealed that PGCs with higher chitosan content (PGC2) had better antiadhesion effects, as evaluated by an adhesion score at day 14 postsurgery. Thus, PGC2 was effective in reducing the formation of tissue adhesion. Therefore, PGC electrospun membrane may provide a potential peritoneal antiadhesion barrier for clinical use.
    Type of Medium: Online Resource
    ISSN: 1536-3708 , 0148-7043
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 2063013-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages