Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2017
    In:  Journal of The Royal Society Interface Vol. 14, No. 133 ( 2017-08), p. 20170470-
    In: Journal of The Royal Society Interface, The Royal Society, Vol. 14, No. 133 ( 2017-08), p. 20170470-
    Abstract: Curcumin is a plant secondary metabolite with outstanding therapeutic effects. Therefore, there is a great interest in developing new strategies to produce this high-value compound in a cheaper and environmentally friendly way. Curcumin heterologous production in Escherichia coli using artificial biosynthetic pathways was previously demonstrated using synthetic biology approaches. However, the culturing conditions to produce this compound were not optimized and so far only a two-step fermentation process involving the exchange of culture medium allowed high concentrations of curcumin to be obtained, which limits its production at an industrial scale. In this study, the culturing conditions to produce curcumin were evaluated and optimized. In addition, it was concluded that E. coli BL21 allows higher concentrations of curcumin to be produced than E. coli K-12 strains. Different isopropyl β- d -thiogalactopyranoside concentrations, time of protein expression induction and substrate type and concentration were also evaluated. The highest curcumin production obtained was 959.3 µM (95.93% of per cent yield), which was 3.1-fold higher than the highest concentration previously reported. This concentration was obtained using a two-stage fermentation with lysogeny broth (LB) and M9. Moreover, terrific broth was also demonstrated to be a very interesting alternative medium to produce curcumin because it also led to high concentrations (817.7 µM). The use of this single fermentation medium represents an advantage at industrial scale and, although the final production is lower than that obtained with the LB–M9 combination, it leads to a significantly higher production of curcumin in the first 24 h of fermentation. This study allowed obtaining the highest concentrations of curcumin reported so far in a heterologous organism and is of interest for all of those working with the heterologous production of curcuminoids, other complex polyphenolic compounds or plant secondary metabolites.
    Type of Medium: Online Resource
    ISSN: 1742-5689 , 1742-5662
    Language: English
    Publisher: The Royal Society
    Publication Date: 2017
    detail.hit.zdb_id: 2156283-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages