Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2013
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 368, No. 1621 ( 2013-07-05), p. 20130164-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 368, No. 1621 ( 2013-07-05), p. 20130164-
    Abstract: Global nitrogen fixation contributes 413 Tg of reactive nitrogen (N r ) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic N r are on land (240 Tg N yr −1 ) within soils and vegetation where reduced N r contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer N r contribute to nitrate (NO 3 − ) in drainage waters from agricultural land and emissions of trace N r compounds to the atmosphere. Emissions, mainly of ammonia (NH 3 ) from land together with combustion related emissions of nitrogen oxides (NO x ), contribute 100 Tg N yr −1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH 4 NO 3 ) and ammonium sulfate (NH 4 ) 2 SO 4 . Leaching and riverine transport of NO 3 contribute 40–70 Tg N yr −1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr −1 ) to double the ocean processing of N r . Some of the marine N r is buried in sediments, the remainder being denitrified back to the atmosphere as N 2 or N 2 O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of N r in the atmosphere, with the exception of N 2 O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 10 2 –10 3 years), the lifetime is a few decades. In the ocean, the lifetime of N r is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N 2 O that will respond very slowly to control measures on the sources of N r from which it is produced.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2013
    detail.hit.zdb_id: 208382-6
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages