Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of General Virology, Microbiology Society, Vol. 92, No. 5 ( 2011-05-01), p. 1127-1140
    Abstract: Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLpro), a deubiquitinating enzyme, reportedly blocks poly I : C-induced activation of interferon regulatory factor 3 and nuclear factor kappa B, reducing interferon (IFN) induction. This study investigated type I IFN antagonist mechanism of PLpro in human promonocytes. PLpro antagonized IFN-α-induced responses such as interferon-stimulated response element- and AP-1-driven promoter activation, protein kinase R, 2′-5′-oligoadenylate synthetase (OAS), interleukin (IL)-6 and IL-8 expression, and signal transducers and activators of transcription (STAT) 1 (Tyr701), STAT1 (Ser727) and c-Jun phosphorylation. A proteomics approach demonstrated downregulation of extracellular signal-regulated kinase (ERK) 1 and upregulation of ubiquitin-conjugating enzyme (UBC) E2-25k as inhibitory mechanism of PLpro on IFN-α-induced responses. IFN-α treatment significantly induced mRNA expression of UBC E2-25k, but not ERK1, causing time-dependent decrease of ERK1, but not ERK2, in PLpro-expressing cells. Poly-ubiquitination of ERK1 showed a relationship between ERK1 and ubiquitin proteasome signalling pathways associated with IFN antagonism by PLpro. Combination treatment of IFN-α and the proteasome inhibitor MG-132 showed a time-dependent restoration of ERK1 protein levels and significant increase of ERK1, STAT1 and c-Jun phosphorylation in PLpro-expressing cells. Importantly, PD098059 (an ERK1/2 inhibitor) treatment significantly reduced IFN-α-induced ERK1 and STAT1 phosphorylation, inhibiting IFN-α-induced expression of 2′-5′-OAS in vector control cells and PLpro-expressing cells. Overall results proved downregulation of ERK1 by ubiquitin proteasomes and suppression of interaction between ERK1 and STAT1 as type I IFN antagonist function of SARS-CoV PLpro.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2011
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages