Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2007
    In:  Genes & Development Vol. 21, No. 20 ( 2007-10-15), p. 2593-2606
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 21, No. 20 ( 2007-10-15), p. 2593-2606
    Abstract: Phr1 is the single well-conserved murine ortholog of the invertebrate ubiquitin ligase genes highwire (in Drosophila ) and rpm-1 (in Caenorhabditis elegans ). The function and mechanism of action of highwire and rpm-1 are similar—both cell-autonomously regulate synaptogenesis by down-regulating the ortholog of the mitogen-activated protein kinase kinase kinase dual leucine zipper kinase (MAPKKK DLK). Here, using a targeted conditional mutant, we demonstrate that Phr1 also plays essential roles in mammalian neural development. As in invertebrates, Phr1 functions cell-autonomously to sculpt motor nerve terminals. In addition, Phr1 plays essential roles in the formation of major CNS axon tracts including those of the internal capsule, in part via cell-nonautonomous mechanisms, and these results reveal a choice point for cortical axons at the corticostriatal boundary. Furthermore, whereas the neurite morphology phenotypes of highwire and rpm-1 are suppressed by loss of DLK in flies and worms, Phr1 -dependent CNS defects persist in Phr1 , DLK double mutants. Thus, in the mammalian nervous system Phr1 is required for formation of major CNS axon tracts via a mechanism that is both cell-nonautonomous and independent of DLK .
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2007
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages