Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    International Union of Crystallography (IUCr) ; 2016
    In:  Journal of Synchrotron Radiation Vol. 23, No. 3 ( 2016-05-01), p. 685-693
    In: Journal of Synchrotron Radiation, International Union of Crystallography (IUCr), Vol. 23, No. 3 ( 2016-05-01), p. 685-693
    Abstract: The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).
    Type of Medium: Online Resource
    ISSN: 1600-5775
    Language: Unknown
    Publisher: International Union of Crystallography (IUCr)
    Publication Date: 2016
    detail.hit.zdb_id: 2021413-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages