Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    International Union of Crystallography (IUCr) ; 2023
    In:  Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials Vol. 79, No. 2 ( 2023-04-01), p. 157-163
    In: Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, International Union of Crystallography (IUCr), Vol. 79, No. 2 ( 2023-04-01), p. 157-163
    Abstract: Ultra-thin rare earth iron garnet (RIG) films with a narrow ferromagnetic resonance (FMR) line width and a low damping factor have attracted a great deal of attention for microwave and spintronic applications. In this work, 200 nm Y 3 (GaAlFe) 5 O 12 garnet (GaAl-YIG) films were prepared on gadolinium gallium garnet (GGG) substrates by liquid-phase epitaxy (LPE) with low saturation magnetization. The microstructural properties, chemical composition, and magnetostatic and dynamic magnetization characteristics of the films are discussed in detail. According to the structural analysis, these films exhibit a low surface roughness of less than 0.5 nm. The GaAl-YIG films show an obvious temperature dependence of lattice parameter and strain state, and the film's parameter is perfectly matched with that of the GGG substrate at 810°C. There is a clear variation in the Pb level, which brings about a gradual enhancement of the coercivity and a diminution of the squareness ratio of magnetic hysteresis loops as the growth temperature is reduced. Slight changes in surface roughness, strain condition and content of Pb induce the FMR line width and damping factor to vary on a small scale. The line width is less than 10.17 Oe at 12 GHz and the damping factor is of the order of 10 −4 . All these properties demonstrate that these ultra-thin GaAl-YIG films are of benefit for the development of devices operated at lower frequencies and in lower fields.
    Type of Medium: Online Resource
    ISSN: 2052-5206
    Language: Unknown
    Publisher: International Union of Crystallography (IUCr)
    Publication Date: 2023
    detail.hit.zdb_id: 2020841-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages