Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Emerald ; 2019
    In:  Assembly Automation Vol. 39, No. 2 ( 2019-04-01), p. 297-307
    In: Assembly Automation, Emerald, Vol. 39, No. 2 ( 2019-04-01), p. 297-307
    Abstract: Multi-robot laser-based simultaneous localization and mapping (SLAM) in large-scale environments is an essential but challenging issue in mobile robotics, especially in situations wherein no prior knowledge is available between robots. Moreover, the cumulative errors of every individual robot exert a serious negative effect on loop detection and map fusion. To address these problems, this paper aims to propose an efficient approach that combines laser and vision measurements. Design/methodology/approach A multi-robot visual laser-SLAM is developed to realize robust and efficient SLAM in large-scale environments; both vision and laser loop detections are integrated to detect robust loops. A method based on oriented brief (ORB) feature detection and bag of words (BoW) is developed, to ensure the robustness and computational effectiveness of the multi-robot SLAM system. A robust and efficient graph fusion algorithm is proposed to merge pose graphs from different robots. Findings The proposed method can detect loops more quickly and accurately than the laser-only SLAM, and it can fuse the submaps of each single robot to promote the efficiency, accuracy and robustness of the system. Originality/value Compared with the state of art of multi-robot SLAM approaches, the paper proposed a novel and more sophisticated approach. The vision-based and laser-based loops are integrated to realize a robust loop detection. The ORB features and BoW technologies are further utilized to gain real-time performance. Finally, random sample consensus and least-square methodologies are used to remove the outlier loops among robots.
    Type of Medium: Online Resource
    ISSN: 0144-5154
    Language: English
    Publisher: Emerald
    Publication Date: 2019
    detail.hit.zdb_id: 2014655-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages