In:
Engineering Computations, Emerald, Vol. 34, No. 2 ( 2017-04-18), p. 420-446
Kurzfassung:
Uncertainty is inevitable in real-world engineering optimization. With an outer-inner optimization structure, most previous robust optimization (RO) approaches under interval uncertainty can become computationally intractable because the inner level must perform robust evaluation for each design alternative delivered from the outer level. This paper aims to propose an on-line Kriging metamodel-assisted variable adjustment robust optimization (OLK-VARO) to ease the computational burden of previous VARO approach. Design/methodology/approach In OLK-VARO, Kriging metamodels are constructed for replacing robust evaluations of the design alternative delivered from the outer level, reducing the nested optimization structure of previous VARO approach into a single loop optimization structure. An on-line updating mechanism is introduced in OLK-VARO to exploit the obtained data from previous iterations. Findings One nonlinear numerical example and two engineering cases have been used to demonstrate the applicability and efficiency of the proposed OLK-VARO approach. Results illustrate that OLK-VARO is able to obtain comparable robust optimums as to that obtained by previous VARO, while at the same time significantly reducing computational cost. Practical implications The proposed approach exhibits great capability for practical engineering design optimization problems under interval uncertainty. Originality/value The main contribution of this paper lies in the following: an OLK-VARO approach under interval uncertainty is proposed, which can significantly ease the computational burden of previous VARO approach.
Materialart:
Online-Ressource
ISSN:
0264-4401
DOI:
10.1108/EC-01-2016-0020
Sprache:
Englisch
Verlag:
Emerald
Publikationsdatum:
2017
ZDB Id:
2009342-1