Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Ecology, Wiley, Vol. 102, No. 5 ( 2014-09), p. 1163-1170
    Abstract: The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N 2 ‐fixation. Indeed, the results of these experiments suggest that N 2 fixation by legumes is a major driver of soil C and N storage. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11‐year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above‐ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. We found that soil C and N stocks increased by 18% and 16% in eight‐species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity–productivity relationship observed in the last years of the experiment. Synthesis . We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages