In:
Acta Anaesthesiologica Scandinavica, Wiley, Vol. 66, No. 1 ( 2022-01), p. 65-75
Kurzfassung:
The prediction of in‐hospital mortality for ICU patients with COVID‐19 is fundamental to treatment and resource allocation. The main purpose was to develop an easily implemented score for such prediction. Methods This was an observational, multicenter, development, and validation study on a national critical care dataset of COVID‐19 patients. A systematic literature review was performed to determine variables possibly important for COVID‐19 mortality prediction. Using a logistic multivariable model with a LASSO penalty, we developed the Rapid Evaluation of Coronavirus Illness Severity (RECOILS) score and compared its performance against published scores. Results Our development (validation) cohort consisted of 1480 (937) adult patients from 14 (11) Dutch ICUs admitted between March 2020 and April 2021. Median age was 65 (65) years, 31% (26%) died in hospital, 74% (72%) were males, average length of ICU stay was 7.83 (10.25) days and average length of hospital stay was 15.90 (19.92) days. Age, platelets, PaO2/FiO2 ratio, pH, blood urea nitrogen, temperature, PaCO2, Glasgow Coma Scale (GCS) score measured within +/−24 h of ICU admission were used to develop the score. The AUROC of RECOILS score was 0.75 (CI 0.71–0.78) which was higher than that of any previously reported predictive scores (0.68 [CI 0.64–0.71], 0.61 [CI 0.58–0.66] , 0.67 [CI 0.63–0.70], 0.70 [CI 0.67–0.74] for ISARIC 4C Mortality Score, SOFA, SAPS‐III, and age, respectively). Conclusions Using a large dataset from multiple Dutch ICUs, we developed a predictive score for mortality of COVID‐19 patients admitted to ICU, which outperformed other predictive scores reported so far.
Materialart:
Online-Ressource
ISSN:
0001-5172
,
1399-6576
Sprache:
Englisch
Verlag:
Wiley
Publikationsdatum:
2022
ZDB Id:
2004319-3