Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Ecology Letters Vol. 22, No. 10 ( 2019-10), p. 1658-1667
    In: Ecology Letters, Wiley, Vol. 22, No. 10 ( 2019-10), p. 1658-1667
    Abstract: Environmental variability can structure species coexistence by enhancing niche partitioning. Modern coexistence theory highlights two fluctuation‐dependent temporal coexistence mechanisms —the storage effect and relative nonlinearity – but empirical tests are rare. Here, we experimentally test if environmental fluctuations enhance coexistence in a California annual grassland. We manipulate rainfall timing and relative densities of the grass Avena barbata and forb Erodium botrys , parameterise a demographic model, and partition coexistence mechanisms. Rainfall variability was integral to grass–forb coexistence. Variability enhanced growth rates of both species, and early‐season drought was essential for Erodium persistence. While theoretical developments have focused on the storage effect, it was not critical for coexistence. In comparison, relative nonlinearity strongly stabilised coexistence, where Erodium experienced disproportionately high growth under early‐season drought due to competitive release from Avena . Our results underscore the importance of environmental variability and suggest that relative nonlinearity is a critical if underappreciated coexistence mechanism.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages