Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Global Change Biology, Wiley, Vol. 18, No. 2 ( 2012-02), p. 435-447
    Abstract: The world's ecosystems are subjected to various anthropogenic global change agents, such as enrichment of atmospheric CO 2 concentrations, nitrogen ( N ) deposition, and changes in precipitation regimes. Despite the increasing appreciation that the consequences of impending global change can be better understood if varying agents are studied in concert, there is a paucity of multi‐factor long‐term studies, particularly on belowground processes. Herein, we address this gap by examining the responses of soil food webs and biodiversity to enrichment of CO 2 , elevated N, and summer drought in a long‐term grassland study at Cedar Creek, Minnesota, USA (Bio CON experiment). We use structural equation modeling ( SEM ), various abiotic and biotic explanatory variables, and data on soil microorganisms, protozoa, nematodes, and soil microarthropods to identify the impacts of multiple global change effects on drivers belowground. We found that long‐term (13‐year) changes in CO 2 and N availability resulted in modest alterations of soil biotic food webs and biodiversity via several mechanisms, encompassing soil water availability, plant productivity, and – most importantly – changes in rhizodeposition. Four years of manipulation of summer drought exerted surprisingly minor effects, only detrimentally affecting belowground herbivores and ciliate protists at elevated N . Elevated CO 2 increased microbial biomass and the density of ciliates, microarthropod detritivores, and gamasid mites, most likely by fueling soil food webs with labile C. Moreover, beneficial bottom‐up effects of elevated CO 2 compensated for detrimental elevated N effects on soil microarthropod taxa richness. In contrast, nematode taxa richness was lowest at elevated CO 2 and elevated N. Thus, enrichment of atmospheric CO 2 concentrations and N deposition may result in taxonomically and functionally altered, potentially simplified, soil communities. Detrimental effects of N deposition on soil biodiversity underscore recent reports on plant community simplification. This is of particular concern, as soils house a considerable fraction of global biodiversity and ecosystem functions.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages