In:
Journal of Cellular and Molecular Medicine, Wiley, Vol. 22, No. 9 ( 2018-09), p. 4496-4506
Abstract:
Aplastic anaemia (AA) is a life‐threatening hematopoietic disorder characterized by hypoplasia and pancytopenia with increasing fat cells in the bone marrow (BM). The BM‐derived mesenchymal stem cells (MSCs) from AA are more susceptible to be induced into adipogenic differentiation compared with that from control, which may be causatively associated with the fatty BM and defective hematopoiesis of AA. Here in this study, we first demonstrated that levamisole displayed a significant suppressive effect on the in vitro adipogenic differentiation of AA BM‐MSCs. Mechanistic investigation revealed that levamisole could increase the expression of ZFP36L1 which was subsequently demonstrated to function as a negative regulator of adipogenic differentiation of AA BM‐MSCs through lentivirus‐mediated ZFP36L1 knock‐down and overexpression assay. Peroxisome proliferator‐activated receptor gamma coactivator 1 beta (PPARGC1B) whose 3′‐untranslated region bears adenine‐uridine‐rich elements was verified as a direct downstream target of ZFP36L1, and knock‐down of PPARGC1B impaired the adipogenesis of AA BM‐MSCs. Collectively, our work demonstrated that ZFP36L1‐mediated post‐transcriptional control of PPARGC1B expression underlies the suppressive effect of levamisole on the adipogenic differentiation of AA BM‐MSCs, which not only provides novel therapeutic targets for alleviating the BM fatty phenomenon of AA patients, but also lays the theoretical and experimental foundation for the clinical application of levamisole in AA therapy.
Type of Medium:
Online Resource
ISSN:
1582-1838
,
1582-4934
DOI:
10.1111/jcmm.2018.22.issue-9
Language:
English
Publisher:
Wiley
Publication Date:
2018
detail.hit.zdb_id:
2076114-4