Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  New Phytologist Vol. 221, No. 3 ( 2019-02), p. 1447-1456
    In: New Phytologist, Wiley, Vol. 221, No. 3 ( 2019-02), p. 1447-1456
    Abstract: Upland forest soils are known to be the main biological sink for methane, but studies have shown that net methane uptake of a forest ecosystem can be reduced when methane emissions by vegetation are considered. We estimated the methane budget of a young oak plantation by considering tree stems but also the understorey vegetation. Automated chambers connected to a laser‐based gas analyser, on tree stems, bare soil and soil covered with understorey vegetation, recorded CH 4 fluxes for 7 months at 3 h intervals. Tree stem emissions were low and equated to only 0.1% of the soil sink. Conversely, the presence of understorey vegetation increased soil methane uptake. This plant‐driven enhancement of CH 4 uptake occurred when the soil was consuming methane. At the stand level, the methane budget shifted from −1.4 ± 0.4 kg C ha −1 when we upscaled data obtained only on bare soil, to −2.9 ± 0.6 kg C ha −1 when we considered soil area that was covered with understorey vegetation. These results indicate that aerenchymatous plant species, which are known to reduce the methane sink in wetlands, actually increase soil methane uptake two‐fold in an upland forest by enhancing methane and oxygen transport and/or by promoting growth of methanotrophic populations.
    Type of Medium: Online Resource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 208885-X
    detail.hit.zdb_id: 1472194-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages