In:
Photochemistry and Photobiology, Wiley, Vol. 98, No. 2 ( 2022-03), p. 325-333
Abstract:
Imaging in the shortwave‐infrared region (SWIR, λ = 1000–2500 nm) has the potential to enable deep tissue imaging with high resolution. Critical to the development of these methods is the identification of low molecular weight, biologically compatible fluorescent probes that emit beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10’ position) with electron withdrawing groups has been shown to lead to significant redshifts in absorbance and emission. Guided by quantum chemistry computational modeling studies, we investigated the installation of a ketone bridge at the C10’ position. This simple modification extends the absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon output. Overall, these studies demonstrate that broadly applied xanthene dyes can be extended into the SWIR range.
Type of Medium:
Online Resource
ISSN:
0031-8655
,
1751-1097
Language:
English
Publisher:
Wiley
Publication Date:
2022
detail.hit.zdb_id:
2048860-9
SSG:
12