Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    ASME International ; 2020
    In:  Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems Vol. 3, No. 1 ( 2020-02-01)
    In: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, ASME International, Vol. 3, No. 1 ( 2020-02-01)
    Abstract: In general, the fatigue life of a safety critical pressure component is estimated using best-fit fatigue life curves (S-N curves). These curves are estimated based on underlying in-air condition fatigue test data. The best-fitting approach requires a large safety factor to accommodate the uncertainty associated with large scatter in fatigue test data. In addition to this safety factor, reactor component fatigue life prognostics requires an additional correction factor that in general is also estimated deterministically. This additional factor known as the environmental correction factor Fen is to cater the effect of the harsh coolant environment that severely reduces the life of these components. The deterministic Fen factor may also lead to further conservative estimation of fatigue life leading to unnecessary early retirement of costly reactor components. To address the above-mentioned issues, we propose a data-analytics framework which uses Weibull and Bootstrap probabilistic modeling techniques for explicitly quantifying the uncertainty/scatter associated with fatigue life rather than estimating the lives based on a best-fit based deterministic approach. We assume the proposed probabilistic approach would provide the first hand information for assessing the maximum and minimum effects of pressurized water reactor water on the reactor component. In the discussed approach, in addition to the probabilistic fatigue curves, we suggest using a probabilistic environment correction factor Fen. We assume the probabilistic fatigue curve and Fen would capture the S-N data scatter associated with the bulk effect of material grades, surface finish, strain rate, etc. on the material/component fatigue life.
    Type of Medium: Online Resource
    ISSN: 2572-3901 , 2572-3898
    Language: English
    Publisher: ASME International
    Publication Date: 2020
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages