Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    ASME International ; 2022
    In:  Journal of Biomechanical Engineering Vol. 144, No. 10 ( 2022-10-01)
    In: Journal of Biomechanical Engineering, ASME International, Vol. 144, No. 10 ( 2022-10-01)
    Abstract: Transcatheter aortic valve replacement (TAVR) is a minimally invasive strategy for the treatment of aortic stenosis. The complex postoperative complications of TAVR were related to the type of implanted prosthetic valve, and the deep mechanism of this relationship may guide the clinical pre-operative planning. This technical brief developed a numerical method of TAVR to compare the outcome difference between balloon-expandable valve and self-expandable valve and predict the postoperative results. A complete patient-specific aortic model was reconstructed. Two prosthetic valves (balloon-expandable valve and self-expandable valve) were introduced to simulate the implantation procedure, and postprocedural function was studied with fluid–structure interaction method, respectively. Results showed similar stress distribution for two valves, but higher peak stress for balloon-expandable valve model. The balloon-expandable valve was associated with a better circular cross section and smaller paravalvular gaps area. Hemodynamic parameters like cardiac output, mean transvalvular pressure difference, and effective orifice area (EOA) of the balloon-expandable valve model were better than those of the self-expandable valve model. Significant outcome difference was found for two prosthetic valves. Balloon-expandable valve may effectively decrease the risk and degree of postoperative paravalvular leak, while self-expandable valve was conducive to lower stroke risk due to lower aortic stress. The numerical TAVR simulation process may become an assistant tool for prosthesis selection in pre-operative planning and postoperative prediction.
    Type of Medium: Online Resource
    ISSN: 0148-0731 , 1528-8951
    Language: English
    Publisher: ASME International
    Publication Date: 2022
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages