Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    ASME International ; 2000
    In:  Journal of Biomechanical Engineering Vol. 122, No. 2 ( 2000-04-01), p. 203-207
    In: Journal of Biomechanical Engineering, ASME International, Vol. 122, No. 2 ( 2000-04-01), p. 203-207
    Abstract: Preclinical testing of orthopaedic implants is becoming increasingly important to eliminate inferior designs before animal experiments or clinical trials are begun. Preclinical tests can include both laboratory bench tests and computational modeling. One problem with bench tests is that variability in prosthesis insertion can significantly influence the failure rate; this makes comparison of prostheses more difficult. To solve this problem an insertion method is required that is both accurate and reproducible. In this work, a general approach to the insertion of hip prostheses into femoral bones is proposed based on physically replicating an insertion path determined using computer animation. As a first step, the seated prosthesis position is determined from templates and femur radiographs. Three-dimensional images of the prosthesis and bone are then imported into computer animation software and an insertion path in the coronal plane is determined. The insertion path is used to determine the profile of a cam. By attaching the prosthesis to a carriage, which is pneumatically moved along this cam, the required insertion motion of the prosthesis in the coronal plane can be achieved. This paper describes the design and validation of the insertion machine. For the validation study, a nonsymmetric hip prosthesis design (Lubinus SPII, Waldemar Link, Germany) is used. It is shown that the insertion machine has sufficient accuracy and reproducibility for preclinical mechanical testing. [S0148-0731(00)00602-6]
    Type of Medium: Online Resource
    ISSN: 0148-0731 , 1528-8951
    Language: English
    Publisher: ASME International
    Publication Date: 2000
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages