Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biointerphases, American Vacuum Society, Vol. 10, No. 4 ( 2015-12-01)
    Abstract: Retraction fibers (RFs) determine orientation of the cell division axis and guide the spreading of daughter cells. Long and unidirectional RFs, which are especially apparent during mitosis of cells in three-dimensional (3D) environments, enable improved control over cell fate, following division. However, 3D gel environments lack the cues necessary for predetermining the orientation of RFs to direct tissue architecture. While patterning of focal adhesion regions by microcontact printing can determine orientation of the RFs through enhancing focal adhesion numbers along particular directions, the RFs remain short due to the two-dimensional culture environment. Herein, the authors demonstrate that nanoimprinted grooves of polylactic acid glycolic acid (PLGA) with a high aspect ratio (A.R. of 2.0) can provide the cues necessary to control the direction of RFs, as well as enable the maintenance of long and unidirectional RFs as observed within 3D cultures, while the same is not possible with PLGA grooves of lower A.R. (1.0 or lower). Based on enhanced levels of contact guidance of premitotic fibroblast protrusions at high A.R. grooves and deeper levels of focal adhesion due to filopodia extensions into these grooves, it is suggested that submicron (800 nm width) PLGA grooves with A.R. of 2 are capable of supporting mechanical forces from cell protrusions to a greater depth, thereby enabling the maintenance of the protrusions as long and unidirectional RFs during cell division. Given the scalability and versatility of nanoimprint techniques, the authors envision a platform for designing nanostructures to direct tissue regeneration and developmental biology.
    Type of Medium: Online Resource
    ISSN: 1934-8630 , 1559-4106
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2015
    detail.hit.zdb_id: 2234510-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages