Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Vacuum Society ; 2020
    In:  Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Vol. 38, No. 3 ( 2020-05-01)
    In: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, American Vacuum Society, Vol. 38, No. 3 ( 2020-05-01)
    Abstract: Tantalum diboride (TaB2) belonging to the ultrahigh temperature ceramics family is proving to be a promising material for hard protective films, thanks to its high thermal stability and excellent mechanical properties. However, growth of TaB2 ± x films prepared using physical vapor deposition techniques is strongly affected by Ar neutrals reflected from a stoichiometric TaB2 target due to a significant mass difference of heavy Ta and light B atoms leading to substantial changes in the final chemical composition and structure of films. In this work, TaB2 ± x films are experimentally prepared using high target utilization sputtering. Stopping and range of ions in matter simulations are used to investigate the behavior of Ar neutrals during deposition processes. A wide range of analytical methods is used to completely characterize the chemical composition, structure, and mechanical properties of TaB2 ± x films, and the explanation of the obtained results is supported by density functional theory calculations. TaB2 ± x films grow in a broad compositional range from TaB1.36 to TaB3.84 depending on the kinetic energy of Ar neutrals. The structure of overstoichiometric TaB2 + x films consists of 0001 preferentially oriented α-TaB2 nanocolumns surrounded by a boron-tissue phase. In the case of highly understoichiometric TaB2 − x films, the boron-tissue phase disappears and the structure consisting of 0001 and 101¯1 oriented α-TaB2 nanocolumns is formed. All TaB2 ± x films exhibit excellent mechanical properties with high hardness, ranging from 27 to 43 GPa and relatively low values of Young's modulus in the range of 304–488 GPa.
    Type of Medium: Online Resource
    ISSN: 0734-2101 , 1520-8559
    RVK:
    Language: English
    Publisher: American Vacuum Society
    Publication Date: 2020
    detail.hit.zdb_id: 1475424-1
    detail.hit.zdb_id: 797704-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages