In:
Medical Physics, Wiley, Vol. 35, No. 10 ( 2008-10), p. 4660-4670
Kurzfassung:
Collagen types I and III can be characterized at the molecular level (at the tens to hundreds of nanometers scale) using small angle x‐ray scattering (SAXS). Although collagen fibril structural parameters at this length scale have shown differences between diseased and nondiseased breast tissues, a comprehensive analysis involving a multitude of features with a large patient cohort has not previously been investigated. Breast tissue samples were excised from 80 patients presenting with either a breast lump or reduction mammoplasty. From these, invasive carcinoma, benign tissue, and normal parenchyma were analyzed. Parameters related to collagen structure, including longitudinal (axial) and lateral (equatorial) features, polar angle features, total scattering intensity, and tissue heterogeneity effects, were extracted from the SAXS patterns and examined. The amplitude of the third‐order axial peak and the total scattering intensity (amorphous scatter) showed the most separation between tissue groups and a classification model using these two parameters demonstrated an accuracy of over 95% between invasive carcinoma and mammoplasty patients. Normal tissue taken from disease‐free patients (mammoplasty) and normal tissue taken from patients with presence of disease showed significant differences, suggesting that SAXS may provide different diagnostic information from that of conventional histopathology.
Materialart:
Online-Ressource
ISSN:
0094-2405
,
2473-4209
Sprache:
Englisch
Verlag:
Wiley
Publikationsdatum:
2008
ZDB Id:
1466421-5