Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2017
    In:  The Journal of the Acoustical Society of America Vol. 141, No. 3 ( 2017-03-01), p. 1615-1626
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 141, No. 3 ( 2017-03-01), p. 1615-1626
    Abstract: The rapid development of consumer electronics and the extensive use of mobile devices require the ample use of miniature-loudspeakers for audio applications. The demand for better sound pushes manufacturers to design digital signal processing (DSP) chips (smart amplifiers), which in turn could cause unpleasant sound due to distortion and parameter nonlinearity or transducer damage caused by large diaphragm excursion or voice-coil (VC) burn. This article presents a methodology for nonlinear parameter estimation using an inverse method and displacement limiter for large VC displacement-dependent transducer damage prevention. A set of transduction equations is employed to inversely determine parameters using a polynomial expression. The appropriate selection of an objective function incorporating the unknown vector of nonlinear parameters leads to the adjoint problem that requires a gradient solution. A numerical solver is provided to obtain the VC displacement, current, and derivatives using a robust hybrid spline differential method. The dynamic limiter is proposed to control the peak values of the VC velocity so as to limit an excessive displacement which prevents impulsive damage to the receiver and further application of the DSP board. Numerical and experimental results indicate that the proposed method has high efficiency and can be widely used in transducer applications.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2017
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages